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Abstract

A logic based on the two truth values True and False is sometimes inadequate when
describing human reasoning. Fuzzy logic uses the whole interval between O (False) and 1
(Tiue) to describe human reasoning. Asaresult, fuzzy logicis being applied in rule based
automatic controllers, and this paper is part of a course for control engineers.
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Figure 1: Process diagram of afeed-tank.

1. Introduction

A fuzzy controller, in a cement plant for example, aims to mimic the operator's terms by
means of fuzzy logic. Toillustrate, consider the tank in Fig. 1, which is for feeding a cement
mill such that the feed flow is more or less constant. The simplified design in the figure
consists of a tank, two level sensors, and a magnetic valve. The objective is to control the
valve V1, such that the tank is refilled when the level is as low.és and stop the refilling

when the level is as high dsH. The sensoL L is 1 when the level is above the mark, and

0 when the level is below; likewise with the sendof. The valve opens wheV is set

to 1, and it closes whefr; is set to0. In two-valued (Boolean) logic the controller can be

described
1, if LL switches from1to0

Vi= 0, f LH switches from0to1 (1)
An operator, whose responsibility is to open and close the valve, would perhaps describe
the control strategy as:

1f the level is low then open Vi (2)
1f the level is high then close V}

The former strategy (1) is suitable for a Programmable Logic Controller (PLC) using
Boolean logic, and the latter (2) is suitable for a fuzzy controller using fuzzy logic. Our aim
here is not to give implementation details of the latter, but to use the example to explain the
underlying fuzzy logic.

Lotfi Zadeh, the father of fuzzy logic, claimed that masys in the world that sur-
rounds us are defined by a non-distinct boundary. Indeed¢thg high mountains, or, the
set of low level measurements in Fig 1 are examples of such sets. Zadeh decided to ex-
tend two-valued logic, defined by the binary pé#lix, 1} , to the whole continuous interval
[0,1], thereby introducing a gradual transition from falsehood to truth. The original and
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Figure 2: Possible definition of the set high levels in thetank in Fig. 1.

pioneering papers on fuzzy sets by Zadeh (e.g., 1965, 1973, 1975) explain the theory of
fuzzy sets that result from the extension as well as a fuzzy logic based on the set theory.
Primary references can be found conveniently in abook with 18 selected papers by Zadeh
(Yager, Ovchinnikov, Tong & Nguyen, 1987). For a thorough introduction to the theory,
Zadehin hisarticlein IEEE Spectrum (Zadeh, 1984) recommends the book by Kaufmann
(1975). A more recent introduction to fuzzy set theory and its applications is the book by
Zimmermann (1993) whichis easy to read. Specific questions or definitions can be looked
up in the Systems and Control Encyclopedia (Singh, 1987; 1990; 1992). The book has a
large collection of articles on control conceptsin general, and fuzzy control in particular.

Here we will focus on the fuzzy set theory underlying (2), and present the basic def-
initions and operations. Please be aware that the interpretation of fuzzy set theory in the
following isjust one of several possible; Zadeh and other authors have suggested alterna-
tive definitions. Throughout, |etters denoting matrices are in bold upper case, for example
A; vectors are in bold lower case, for example x; scalars are in italics, for example »; and
operations are in bold, for example min.

2. Fuzzy Sets

Fuzzy sets are afurther development of the mathematical concept of a set. Sets were first
studied formally by the German mathematician Georg Cantor (1845-1918). Histheory of

sets met much resistance during hislifetime, but nowadays most mathematicians believe it

is possible to express mosgt, if not all, of mathematics in the language of set theory. Many
researchers are looking at the consequences of 'fuzzifying’ set theory, and much mathemat-

ical literature is the result. For control engineers, fuzzy logic and fuzzy relations are the
most important in order to understand how fuzzy rules work.

Conventional sets A set is any collection of objects which can be treated as a whole.
Cantor described a set by its members, such that an item from a given universe is either
a member or not. The termst, collection andclass are synonyms, just as the terms
item, element and member. Almost anything called: ser in ordinary conversation is an
acceptable set in the mathematical sense, cf. the next example.



Example 1 (sets) The following are well defined lists or collections of objects, and there-
fore entitled to be called sets.

(a) The set of non-negative integers less than 4. This is a finite set with four members:
0, 1,2 and 3.

(b) The set of live dinosaurs in the basement of the British Museum. This set has no
members, and is called an empty set.

(c) The set of measurements greater than 10 volts. Even though this set is infinite, it is
possible to determine whether a given measurement is a member or not.

A set can be specified by its members, they characterize a set completely. The list of
members A = {0, 1,2, 3} specifiesafinite set. Nobody can list all elements of an infinite
set, we must instead state some property which characterizes the elements in the set, for
instance the predicate x > 10. That set is defined by the elements of the universe of
discourse which make the predicatetrue. So there aretwo waysto describe aset: explicitly
inalist or implicitly with a predicate.

Fuzzy sets  Following Zadeh many sets have more than an either-or criterion for mem-
bership. Take for example the set of young people. A one year old baby will clearly be a
member of the set, and a 100 years old person will not be a member of this set, but what
about people at the age of 20, 30, or 40 years? Ancther example is a weather report re-
garding high temperatures, strong winds, or nice days. In other cases a criterion appears
nonfuzzy, but is perceived as fuzzy: a speed limit of 60 kilometres per hour, a check-out
time at 12 noon in a hotel, a 50 years old man. Zadeh proposed a grade of membership,
such that the transition from membership to non-membership is gradual rather than abrupt.
The grade of membership for all its membersthusdescribesafuzzy set. Anitem's grade
of membership is normally a real number between 0 and 1, often denoted by the Greek letter
1. The higher the number, the higher the membership (Fig. 2). Zadeh regards Cantor’s set
as a special case where elements have full membeiship; = 1. He nevertheless called
Cantor's setwonfuzzy ; today the termerisp set is used, which avoids that little dilemma.
Notice that Zadeh does not give a formal basis for how to determine the grade of mem-
bership. The membership for a 50 year old in theyseg depends on one’s own view.
The grade of membership is a precise, but subjective measure that depends on the context.
Afuzzy membership function is different from a statistical probability distribution. This
is illustrated next in the so-called egg-eating example.

Example 2 (Probability vs possibility) (Zadeh in Zimmermann, 1991) Consider the state-
ment “Hans ate X eggs for breakfast”, where X € U = {1,2,...,8}. We may associate a
probability distribution p by observing Hans eating breakfast for 100 days,

U =1[1 2 3 456 7 8 ]

p = [ 1 8 10000 0]
A fuzzy set expressing the grade of ease with which Hans can eat X eggs may be the fol-
lowing so-called possibility distribution m,

U =1123 45 6 7 8 ]

~ =[] 1111 8 6 4 2 ]
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Figure 3: The setsmore or less old, very young, and not very young are derived from young
and old.

Where the possibility for X = 3 is 1, the probability is only 0.1.

The example shows, that a possible event does not imply that it is probable. However,
if it is probable it must aso be possible. You might view a fuzzy membership function as
your personal distribution, in contrast with a statistical distribution based on observations.

2.1  Universe

Elements of afuzzy set are taken from a universe of discourse, or universe for short. The
universe contains al elementsthat can comeinto consideration. Even the universe depends
on the context, as the next example shows.

Example 3 (universe) (a) The set of young people could have all human beings in the
world as its universe. Alternatively it could be the numbers between 0 and 100, these would
then represent age (Fig. 3).

(b) The set x > 10 (x much greater than 10) could have as a universe all positive
measurements.

An application of the universe is to suppress faulty measurement data, for example
negative valuesfor the level in our tank example.

In case we are dealing with a non-numerical quantity, for instance taste, which cannot
be measured against a numerical scale, we cannot use anumerical universe. The elements
are then said to be taken from a psychological continuum ; an example of such a universe
could be {bitter, sweet, sour, salt, hot, ...}.

2.2 Membership function

Every element in the universe of discourse is a member of the fuzzy set to some grade,
maybeeven zero. Theset of elementsthat have anon-zero membership iscalled the support
of the fuzzy set. The function that ties anumber to each element x of the universeiscalled
the membership function p(x).



Continuous And Discrete Representations  Therearetwo alternative waysto represent
a membership function in a computer: continuous or discrete. In the continuous form
the membership function is a mathematical function, possibly a program. A membership
function is for example bell-shaped (also called a w-curve), s-shaped (called an s-curve),
areverse s-curve (caled z-curve), triangular, or trapezoidal. There is an example of an s-
curve inFig. 2. Inthe discrete form the membership function and the universe are discrete
pointsin alist (vector). Sometimes it can be more convenient with a sasmpled (discrete)
representation.

As avery crude rule of thumb, the continuous form is more CPU intensive, but less
storage demanding than the discrete form.

Example 4 (continuous) A cosine function can be used to generate a variety of mem-
bership functions. The s-curve can be implemented as

0 ,x < 2
s(xy, xp,x) = % + %cos (;f_x{;‘l 77) o <o <z, 3
,T > T,

where xy is the left breakpoint, and x,. is the right breakpoint. The z-curve is just a reflec-
tion,

1 ,x <Xy
z2(zy, @, ) = % + % cos (;:2’[ 7T) o <z <a, 4
0 ,T > Ty

Then the m-curve can be implemented as a combination of the s-curve and the z-curve,
such that the peak is flat over the interval (x4, x3),

(21, T2, X3, Tg, ) = min(s(z1, x2, x), 2(x3, 24, T)) (5)
Figure 2 was drawn using 7(10, 90, 100, 100, z).

Example 5 (discrete) 7 get a discrete representation equivalent to Fig. 2, assume the
universe u is represented by a number of samples, say,

u:[O 20 40 60 80 100]
Insertion results in the corresponding list of membership values:
7(10, 90, 100,100,u;) =0

(10,90, 100,100, uy) = 0.04
(10,90, 100, 100, u3) = 0.31
(10,90, 100, 100, uy) = 0.69
(10,90, 100,100, us) = 0.96

7(10, 90,100,100, ug) =1
or, for short,
7(10,90, 100,100, u) = [ 0 0.04 031 069 096 1 ]



Normalisation A fuzzy set is normalised if its largest membership value equals 1.
You normalise by dividing each membership value by the largest membership in the set,
a/max(a).

2.3  Singletons

Strictly speaking, afuzzy set A isacollection of ordered pairs
A={(z,pu(x))} (6)

Item = belongs to the universe and p(z) is its grade of membership in A. A single pair
(z, pu(x)) is called a fuzzy singleton; thus the whole set can be viewed as the union of its
constituent singletons. It is often convenient to think of aset A just as a vector

a= (u(x1), (o), ..., 1(zn))

Itisunderstood then, that each positioni (1,2, . .., n) correspondsto apoint in the universe
of n points.

2.4  Linguistic variables

Just like an algebraic variable takes numbers as values, a linguistic variable takes words
or sentences as values (Zadeh in Zimmermann, 1991). The set of vaues that it can take
is called its term set. Each value in the term set is a fuzzy variable defined over a base
variable. The base variable defines the universe of discourse for all the fuzzy variablesin
the term set. In short, the hierarchy is as follows: linguistic variable — fuzzy variable —
base variable.

Example 6 (term set) Let x be a linguistic variable with the label “Age’. Terms of this
linguistic variable, which are fuzzy sets, could be “old”, “young’, “very old’ from the term
set

T = {0ld, VeryOld, NotSoOld, MoreOr LessY oung,
QuiteY oung, VeryY oung}

Each term is a fuzzy variable defined on the base variable, which might be the scale from
0 to 100 years.

Primary terms A primary term is aterm or a set that must be defined a priori, for
example oung and Old inFig. 3, whereasthe sets léryloung and Notloung are modified
sets.

2.5 Tank Level Example

We have now comealittle closer to the representation of afuzzy control rule. Inthe premise

1f the level is low,

clearly low isafuzzy variable, avalue of thelinguistic variable level. Theterm Jow can be
represented in the computer as avector low. It isdefined on auniverse, which isthe range
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Figure 4: Two terms defining high tank levels (solid) and low tank levels (dashed).

of the expected vaues of level, i.e., the interval [0,100] percent full. The measurement
level is a scdar, and the statement level is low looks up the membership value low(s),
where level isrounded to the nearest element in the universe to find the appropriate index
i. The outcome is anumber 1 = [0, 1] telling how well the premise is fulfilled. Figure 4
suggests a possible definition of the term set {low, high} for thetank level problem.

3. Operations On Fuzzy Sets

The membership function is obviously a crucial component of afuzzy set. It istherefore
natural to define operations on fuzzy sets by means of their membership functions.

3.1 Set operations

In fact afuzzy set operation createsanew set from one or severa given sets (Fig. 5). For
example, giventhesets A and B theintersectionisanew fuzzy set with itsown membership
function.

Definition 1 (set operations) Let A and B be fuzzy sets on a mutual universe.
(a) The intersection of A and B is

ANB= aminb
The operation min is an item-by-item minimum comparison between corresponding items

inaandb.
(b) The union of A and B is

AUB=amaxbh

where max is an item-by-item maximum operation.
(¢c) The complement of A is
A=1-a
where each membership value in a is subtracted from 1.

Afuzzy set X isafuzzy subset of theset Y, written X C Y, if itsmembershipfunctionis
lessthan or equal tothemembershipfunctionof Y. InFig. 5wehave(AN B) C (AU B).
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Figure 5: Thethree primitive set operations.

Example 7 (buy a house) (Zimmermann, 1993): A four-person family wants to buy a
house. An indication of how comfortable they want to be is the number of bedrooms in
the house. But they also want a large house. Let u= (1,2,3,4,5,6,7,8,9,10) be the
set of available houses described by their number of bedrooms. Then the fuzzy set ¢ (for
Comfortable) may be described as

c= [ 02 05 08 1 07 03 0 O 0 O ]
Let 1 be the fuzzy set Large defined as
I=[0 0 02 04 06 08 1 1 1 1]
The intersection of Comfortable and Large is then
cNl= [ 0 0 02 04 06 03 0 O 0 O ]

1o interpret this, five bedrooms is optimal, but only satisfactory to the grade 0.6. The second
best solution is four bedrooms.
The union of Comfortable and Large is

cUl=[02 05 08 1 07 08 1 1 1 1]

Here four bedrooms is fully satisfactory (1) because it is comfortable, and 7-10 bedrooms
also, because that would mean a large house. The complement of Large is

i:[l 1 08 06 04 02 0 0 O 0]

The operations U and N associate, commute and more (Table 1). These properties are
important, because they help to predict the outcome of long sentences.

Other definitions of the primitive operations are possible, but using max and min is
most common.

3.2 Modifiers

A linguistic modifier, is an operation that modifies the meaning of aterm. For example, in
the sentence “very close to 0°, the wordvery modifiesClose to 0 which is a fuzzy set. A
modifier is thus an operation on a fuzzy set. Examples of other modifiets/érk, more



Property Name

AUB=BUA Commutative
ANB=BnNA Commutative
(AUB)UC =AU (BUC) Associative
(ANB)NC=ANn(BNC) Associative

AN(BUC)=(ANB)U(ANC) Distributive
Au(BNC)=(AUB)U(AUC) Distributive

ANB=AUB DeMorgan
AUB=ANB DeMorgan
(ANB)UA=A Absorption
(AUB)NA=A4A Absorption
AUA=A Idempotency
ANA=A Idempotency
AUA#1 Exclusion not satisfied
ANA#0 Exclusion not satisfied

Table 1. Properties of the primitive operations

or less, possibly, and definitely.

Even though it is difficult precisely to say what effect the modifier very has, it does
have an intensifying effect. The modifier more or less, or morl for short, has the opposite
effect. They are often approximated by the operations

2

1
very a = a“, morla = a>

The power function applies to each vector element of a in turn. Here we have limited

ourselves to squaring and square root, but any power function may be used. On discrete
form, we might have auniverse u = (0, 20, 40, 60, 80). Given the set

young =[ 1 06 01 0 0]

then we can derive the discrete membership function for the set very young by squaring all
elements,

young?=[1 036 001 0 0]
The set very very young is by induction,

young4:[1 013 0 O 0]

The derived setsinherit the universe of the primary set. The plotsin Fig. 3 were generated
using these definitions. Some examples of other modifiers are

extremely a = a3

slightly a = a®
somewhat a = moreorless a and not slightly a
A wholefamily of modifiersis generated by a? where p isany power between zero and
infinity. With p = oo the modifier could be named exactly, because it would suppress all
memberships lower than 1.0.

10



3.3 Relations Between Sets

In any fuzzy controller, relationships among objects play a fundamental role. Some rela
tions concern elements within the same universe: one measurement is larger than another,
oneevent occurred earlier than another, one element resembles another, etc. Other relations
concern elements from digoint universes: the measurement is large and its rate of change
is positive, the z-coordinate is large and the y-coordinate is small, for example. These ex-
amples are relationships between two objects, but in principle we can have relationships
which hold for any number of objects.

Formally, a binary relation or simply arelation R from aset A to aset B assignsto
each ordered pair (a,b) € A x B exactly one of the following statements: (i)’a is related
to b, or (ii) "a is not related to b*. The Cartesian produgt x B is the set of all possible
combinations of the items of and B. A fuzzy relation from a setA to a setB is a fuzzy
subset of the Cartesian prodiictx V' between their respective univerdésandV'.

Assume for example that Donald Duck’s nephew Huey resembles Dewey to the grade
0.8, and Huey resembles Louie to the grade 0.9. We have therefore a relation between to
subsets of the nephews in the family. This is conveniently represented in a matrix (with one
row),

Dewey Louie
Huey [ 08 [09 |

Composition  In order to show how two relations can be combined let us assume another
relation between Dewey and Louie on the one side, and Donald Duck on the other,

R, =

Donald
R, = Dewey| 0.5
Louie | 0.6

It is tempting to try and find out how much Huey resembles Donald by combining the
information in the two matrices:

(i) Huey resembles (0.8) Dewey, and Dewey resembles (0.5) Donald, or
(i) Huey resembles (0.9) Louie, and Louie resembles (0.6) Donald.

Statement (i) contains a chain of relationships, and it seems reasonable to combine them
with anintersection operation. With our definition, this corresponds to choosing the weak-
est membership value for the (transitive) Huey-Donald relationshjf).5. Similarly with
statement (ii). Performing the operation along each chain in (i) and (ii), we get

(iii) Huey resembles (0.5) Donald, or
(iv) Huey resembles (0.6) Donald.

Both (iii) and (iv) seem equally valid, so it seems reasonable to appluriwn op-
eration. With our definition, this corresponds to choosing the strongest relatqgrthe
maximum membership value. The final result is

11



(V) Huey resembles (0.6) Donald

The general rulewhen combining or composing fuzzy relations, isto pick the minimum
fuzzy value in a’series connection’ and the maximum value in a 'parallel connection’. It
is convenient to do this with ainer product.

The inner product is similar to an ordinary matrix (dot) product, except multiplication
is replaced byntersection (M) summation byunion (U) . SupposeR is anm x p andSis
ap x n matrix. Then the innew.n productis ann x n matrix T= (¢;;) whoseij -entry
is obtained by combining thih row of R with the; th column ofS, such that

p
tij = (7"@‘1 ﬁslj)U(rigﬁs%)u...u(rwﬁsm) = UTikmSkj (7)
k=1

As a notation for the generalised inner product, we shallfigsevheref andg are any
functions that take two arguments, in this casend N.With our definitions of the set
operations, composition reduces to what is cattea-min composition in the literature
(Zadeh in Zimmermann, 1991).

If R is a relation froma to b andS is a relation fromb to ¢, then the composition dt
ands is a relation froma to ¢ (transitive law).

Example 8 (inner product) For the tables R, and Ry above we get

0.5
RyU.NR, =[5 [ 09 )0 0[] = 75 [a6] = 08

which agrees with the previous result.

Themax-min composition is distributive with respect tmion,
(RUT)U.NS=(RU.NS)U(TU.NS),

but not with respect tintersection. Sometimes thmin operation innax-min composition
is substituted by for multiplication; then it is calle@ax-star composition.

4. Fuzzy Logic

Logic started as the study of language in arguments and persuasion, and it may be used
to judge the correctness of a chain of reasoning, in a mathematical proof for example. In
two-valued logic a proposition is eitherue or false, but not both. The ’truth” or *falsity”

which is assigned to a statement istit@h-value. In fuzzy logic a proposition may be true

or false or have an intermediate truth-value, suchiase true. The sentencéie level

is high is an example of such a proposition in a fuzzy controller. It may be convenient to
restrict the possible truth values to a discrete domain{8a¥.5, 1} for faise, maybe true,

andrue; in that case we are dealing withulti-valued logic. In practice afiner subdivision

of the unit interval may be more appropriate.

12



4.1 Connectives

In daily conversation and mathematics, sentences are connected with the words and, or,
if-then (or implies), and if and only if. These are called connectives. A sentence which
is modified by the word "not’ is called the negation of the original sentence. The word
and” is used to join two sentences to form thejunction of the two sentences. Similarly
a sentence formed by connecting two sentences with the word or’ is calledsiivection
of the two sentences. From two sentences we may construct one of the form ’If ... then
..."; this is called aconditional sentence. The sentence following ’If” is thewecedent,
and the sentence following "then’ is th@nsequent. Other idioms which we shall regard
as having the same meaning asplttheng’ (wherep andg are sentences) arg implies
q’,” ponlyifg’,” g if p’, etc. The words ’if and only if” are used to obtain from two
sentences &iconditional sentence.

By introducing letters and special symbols, the connective structure can be displayed
in an effective manner. Our choice of symbols is as follows

for "not’

for *and’

for’or’

for "if-then’

for ’if and only if”

The next example illustrates how the symbolic forms can provide a quick overview.

Ty <>

Example 9 (baseball) Consider the sentence,

If either the Pirates or the Cubs lose and the Giants win, then the Dodgers will be
out of first place, and | will lose a bet.

It is a conditional, so it may be symbolised in the form r = s. The antecedent is
composed from the three sentences p ("The Pirates lose”’), ¢ ("The Cubs lose’), and g
("The Giants win”). The consequent is the conjunction of d ("The Dodgers will be out
of first place”) and b ("I will lose a bet’). The original sentence may be symbolised by
((pVe)Ag)= (dAD).

The possible truth-values of a statement can be summarisedirhaable. Take for
example the truth-table for the two-valued proposition g. The usual form (below, left)
lists all possible combinations of truth-values, i.e., the Cartesian product, of the arguments
p andgq in the two leftmost columns. Alternatively the truth-table can be rearranged into a
two-dimensional array, a so-called Cayley table (below, right).

v 0 1 ¢
01071
1]1(1

The vertical axis carries the possible values of the first argumeartid the horizontal axis

13



the possible values of the second argument ¢. At the intersection of row ¢ and column j
is the truth value of the expression p; V ¢;. The truth-values on the axes of the Cayley
table can be omitted since, in the two-valued case, these are always 0 and 1, and in that
order. Truth-tables for binary connectives are thus given by two-by-two matrices, whereit
isunderstood that the first argument is associated with the vertical axis and the second with
the horizontd axis. A total of 16 such two-by-two tables can be constructed, and each has
been associated with a connective.

It is possible to evaluate, in principle at least, a logic statement by an exhaustive test
of al combinations of truth-values of the variables, cf. the so-called array based logic
(Franksen, 1979). The next exampleillustrates an application of array logic.

Example 10 (array logic) In the baseball example, we had ((pV ¢) A g) = (dAb). The
sentence contains five variables, and each variable can take only two truth-values. This
implies 25 = 32 possible combinations. Only 23 are legal, however; in the sense that the
sentence is valid (true) for these combinations, and 32 — 23 = 9 cases are illegal, that is,
the sentence is false for those particular combinations. Assuming that we are interested
only in the legal combinations for which 1 win the bet (b = 0), then the following table
results

U

N NN N OO0 O oo
N O TN~ OO0
DO O ~N N O
QNI NN~
SO ™

1 1
There are thus 10 winning outcomes out of 32 possible.

We can make similar truth-tablesin fuzzy logic. If we for example start out by defining
negation and disjunction, then we can derive other truth-tables from that. Let us assume
that negation is defined as the set theoretic complement, i.e. not p = 1 — p, and that
disjunction is equivaent to set theoretic union, i.e., p V ¢ = p max ¢q. Then we can find

14



truth-tables for or, nor, nand, and and

Or Nor

pVyq -(pVyq)
0 051 11050
05051 05050
1| 11 0| 00

(8)

Nand And
(=p) V (mq) =((=p) vV (79))
11 1 1 0] 0 0
1/05]05 0[05| 05
105 0 0/05] 1

The two rightmost tables are negations of the left hand tables, and the bottom tables are
reflections along the anti-diagonal (orthogona to the main diagonal) of the top tables. It
iscomforting to realise that even though the truth-table for *and” is derived from the table
for "or’, the table for "and’ can also be generated using thein operation, in agreement
with the definition for set intersection.

Theimplication operator, however, has always troubled the fuzzy theoretic community.
If we define it in the usual way, i.ep, = ¢ = —p V ¢, then we get a truth-table which is
counter-intuitive and unsuitable, because several logical laws fail to hold.

Many researchers have tried to come up with other definitions; Kiszka, Kochanska &
Sliwinska (1985) list 72 alternatives to choose from. One other choice is the so-called
Gadel implication which is better in the sense that more "good old” (read: two-valued)
logical relationships become valid (Jantzen, 1995). Three examplés arg = p (sim-
plification), [p A (p = ¢)] = ¢ (modus ponens), arp = ¢) A (¢ = )] = (p = 7)
(hypothetical syllogism). Godel implication can be written

p=q=pP<q Vg )
The truth-table for equivalende>) is determined from implication and conjunction, once
it is agreed thap < ¢ is the same a® = q) A (¢ = p).

Implication Equivalence

(r<q)Vg (p=4q9) A(g=p)

111 1] 0 0 (10)
of 1|1 0] 1 0.5

0[05|1 0|05 1

Fuzzy array logic can be applied to theorem proving, as the next example will show.

Example 11 (fuzzy modus ponens) [t is possible to prove a law by an exhaustive search
of all combinations of truth-values of the variables in fuzzy logic, provided the domain of
truth values is discrete and limited. Take for example modus ponens

PA(p=q)]=q (12)

The sentence contains two variables, and let us assume that each variable can take, say,
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three truth-values. This implies 3% = 9 possible combinations,

P qa p=q pPA@E=>9]l|PrAp=9]=4q
0 0 1 0 1
0 05 1 0 1
0 1 1 0 1
05 0 0 0 1
05 05 1 0.5 1
05 1 1 0.5 1
1 0 0 0 1
1 05 05 0.5 1
11 1 1 1

Since the right column is all ones$, the modus ponens (11) is valid, even for fuzzy logic. The
scope of the validity is limited to the chosen truth domain (0,0.5, 1), this could be extended,
however; and the test performed again in case a higher resolution is required.

Example 12 (fuzzy baseball) e will modify the baseball example (example 9) to see
what difference fuzzy logic makes. The sentence contains five variables, but in the fuzzy
case each variable can take, say, three truth-values. This implies 3% = 243 possible com-
binations; 148 of these are legal in the sense that the sentence is true (truth-value 1) for
these combinations. There are other cases where there is a 0.5 possibility of winning the
bet depending on the possibilities of wins and losses of the Dodgers, etc. If we are inter-
ested again in the combinations for which there is some possibility that 1 win the bet, i.e.,
b € {0,0.5} then there are 88 possible combinations. Instead of listing all of them, we will
Jjust show one for illustration,

(pc,g,d;b) =10 05 05 1 05].

The example shows that fuzzy logic provides more solutions and it requires more com-
putational effort than in the case of two-valued logic. Thisis the price to pay for having
intermediate truth-val ues describe uncertainty.

Originally, Zadeh interpreted a truth-value in fuzzy logic, for instance léry true, as a
fuzzy set (Zadeh, 1988). Thus Zadeh based fuzzy (linguistic) logic on treating Truth as
alinguistic variable that takes words or sentences as values rather than numbers (Zadeh,
1975). Please be aware that our approach differs, being built on scalar truth-values rather
than vector truth-val ues.

4.2 Implication

Therule I f the level is low, then open Vi iscalled an implication, because the value of
level impliesthe value of V; in the controller. It is uncommon, however, to use the Godel
implication (9) in fuzzy controllers. Another implication, call@thmdani implication, is
often used.

Definition 2 (Mamdani implication) (Mamdani, 1977) Let a and b be two fuzzy sets,
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not necessarily on the same universe. The Mamdani implication is defined

a=b=ao.minb (12)
where o.min is the outer product, applying min to each element of the cartesian product of
a andb.

Let a be represented by a column vector and b by a row vector, then their outer min
product may be found as a’'multiplication table’,

omin [ 5 ] B [~ Bm ]
ai aiANby | agAby | -+ | a1 ANb,y, (13)
a, apANby | ap, ANby | --- | ap, ANbyy,

Example 13 (outer product) Take the implication If the level is low, then open Vi,
with low and open defined as,

low = (1,0.75,0.5,0.25,0)

open = (0,0.5,1)

The implication is then represented by the scheme
omin [0] 05| 1 |W

1 0] 0.5 1
0.75 0] 0.5 |0.75
0.5 0] 05 ] 05
0.25 01025025

0 0 0 0
level

This is a very important way to construct an implication table from a rule.

The outermin product (Mamdani, 1977) as well as the outer product wifin re-
placed by * for multiplication (Holmblad & @stergaard, 1982), is the basis for most fuzzy
controllers; therefore the following chapters will use that. However, Zadeh and other re-
searchers have proposed many other theoretical definitions (e.g., Zadeh, 1973; Wenstap,
1980; Mizumoto, Fukami & Tanaka, 1979; Fukami, Mizumoto & Tanaka, 1980; see also
the survey by Lee, 1990).

4.3 Inference

In order to draw conclusions from a rule base we need a mechanism that can produce an
output from a collection off-then rules. This is done using thempositional rule of
inference (CROI). The verbo infer means to conclude from evidence, deduce, or to have

as a logical consequence — do not confuse 'inference’ withr'farence’. To understand

the concept, it is useful to think of a functign= f(x), wheref is a given functiong is

the independent variable, apdhe result; a valug, is inferred fromz given f.
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The famous rule of inference modus ponens,
aN(a=b)=b (14)

can be stated as follows: If it is known that a statement « = b istrue, and also that a is
true, then we can infer that b is true. Fuzzy logic generalises this into generalised modus
ponens (GMP):

adA(a=0b)=0 (15)
Notice that fuzzy logic allows a’ and b’ to be dightly different in some sense from a and b,
for example after applying modifiers. The GMPisclosely related to forward chaining, i.e.,
reasoning in aforward directionin arule base containing chainsof rules. Thisisparticularly
useful in the fuzzy controller. The GMP inference is based on the compositional rule of
inference.

Example 14 (GMP) Given the relation R = low o.min open from the previous example,
and an input vector
level = (0.75,1,0.75,0.5,0.25),

then
vi = levelV.AR (16)
0[05 |1
0[05 075
= [075]1]075]05[]025|v.A[0]05 [0.5 17)
0[025]025
0[0 0

- [0]05]07] (19)

Obviously, the input level is a fuzzy set representing a level somewhat higher than low. The
result after inference is a vector vy slightly less than “open’. Incidentally, if we try putting
level = low, we would expect to get a vector vy equal to open after composition with R.
This is indeed so, but the confirmation is left as an exercise for the student.

4.4 Several Rules

A rule base usually contains several rules, how do we combine them? Returning to the
simple rule base
If the level is low then open Vi (19
1f the level is high then close V;
Weimplicitly assume alogical or between rules, such that therulebaseisread as R, V Rs,
where R; isthe first, and R» the second rule. The rules are equivaent to implication

matrices R; and Ro, therefore the total rule baseisthelogical or of the two tables, item by
item. In genera terms, we have

R=\/R;
Inference can then be performed on R.
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In casetherearen inputs, that is, if each if-side contains n variables, the relation matrix
R generalisesto an n + 1 dimensional array. Lete; (i = 1,...,n) bethe inputs, then
inferenceis carried out by a generalised composition,

u=(e; Xxexx...xe, V.AR

Inferenceis still the usual composition operation; we just have to keep track of the dimen-
sions.

5.  Summary

We have achieved amethod of representing and executingarule I f the level is low then open Vy
in acomputer program. In summary:

1. Definefuzzy setslow and open corresponding to alow level and an open valve; these
can be defined on different universes.

2. Represent theimplication asarelation R by means of the outer product, R = low o.min
open. Theresult is amatrix.

3. Perform the inference with an actual measurement. In the most general case this mea-
surement isafuzzy set, say, thevector level. The control action v, isobtained by means
of the compositional rule of inference, vi = level V.A R.

Fuzzy controllers are implemented in a more specialised way, but they were originally
developed from the concepts and definitions presented above, especially inference and im-
plication.
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